
 

 

 

 

 

Applications of Machine Learning to Single-Molecule Junction Studies 

 

Tianren Fu 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Submitted in partial fulfillment of the 

requirements for the degree of 

Doctor of Philosophy 

under the Executive Committee 

of the Graduate School of Arts and Sciences 

 

 

 

COLUMBIA UNIVERSITY 

 

 

2021 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2021 

Tianren Fu 

All Rights Reserved



 

 

 

Abstract 

Applications of Machine Learning to Single-Molecule Junction Studies 

Tianren Fu 

 

The scanning tunneling microscope-break junction (STM-BJ) technique is an ideal 

platform for single-molecule studies related to the design of molecular electronics. STM-BJ is 

particularly advantageous for molecular junctions for characterizing key properties of molecular 

conductance as well as many other related properties, which contribute to a growing understand 

of the mechanisms of electron transport on the single-molecular level. Prior STM-BJ studies have 

generally focused on simple systems with only one type of molecule forming one type of junction. 

However, some systems (such as those involve in-situ chemical reactions) are intrinsically 

complex with multiple molecules and junction structures that can be accessed in the experiment. 

The analysis of such complex systems requires more powerful analytical methods that can 

distinguish different junction types. Machine learning has been demonstrated as a powerful tool 

for the analysis of such large datasets. In this work, we develop tools to analyze, with a high-

accuracy, individual junction characteristics using machine learning to classify the data and 

provide mechanistic understanding of the STM-BJ method. 

We start our work by investigating the imidazolyl linker. Imidazole is a five-member 

aromatic heterocycle with two nitrogen atoms, in which its pyridinic nitrogen can bind to gold 

electrodes. We study a series of alkanes of different lengths with two terminal 1-imidazolyl linker 

groups. While the intramolecular transmission across these molecules gives the pyridinic double 

peak, we find and prove that π-stacking between two imidazole rings is strong enough to form a 



 

 

third intermolecular conductance peak with higher conductance. This behavior is a good example 

where multiple types of junction are formed with just one molecule. 

Then, we focus on developing a trace-wise classification method using deep learning to 

resolve the data from such complicated systems of special molecules, mixture solutions, or in-situ 

chemical reactions. Compared to existing methods, ours reduces the loss of information during the 

data preprocessing and demonstrates better performance by employing a convolutional neural 

network structure with larger capacity. Benchmarking with several commercially available 

molecules, we show that our model reaches up to 97% accuracy and outruns all the existing 

methods significantly. Nevertheless, we also demonstrate that our model can retain high accuracy 

when two essential parameters, the average conductance and the length of the molecular 

conductance plateau, are removed. Importantly, this capability has not been seen for the other 

algorithm designs. We then apply our method to an in-situ chemical reaction to realize the 

monitoring of the reaction process. This excellent performance of our model on the trace 

classification task demonstrates the capability of machine learning methods on STM-BJ data 

analysis. 

Finally, we also explore the feasibility of utilizing the machine learning toolkit in other 

types of analysis on molecular junctions. We study the relaxation of gold electrodes after junction 

rupture (termed “snapback”) and its relation to pre-rupture evolution of gold contact. With the 

assistance of machine learning tools, we reveal that while the snapback can be well explained by 

this evolution history, the length of molecular conductance plateau is not related to either the 

snapback or this history. We also discover that the junction formation probability for short 

molecules is negatively correlated to the extension of single-atomic gold contact. Based on these 

findings, we conclude that the major mechanism for a molecular junction formation involves a 



 

 

molecule bridging across the junction prior to the rupture of the gold contact, in contrast to the 

previously-accepted picture where the molecule is captured immediately following the rupture. 

As a conclusion, we apply machine learning/deep learning on STM-BJ data analysis by 

developing a model to efficiently classify STM-BJ traces with high accuracy, which is important 

for measuring complex systems containing multiple species. We also demonstrate the feasibility 

of analyzing junction formation mechanisms with the help of machine learning tools. 
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Chapter 1. Introduction 

Chemistry describes the characteristics and behaviors of molecules. However, the 

chemistry of a single molecule can be different from that of an ensemble of molecules, where the 

properties and reactivities of single molecules are generally more sensitive to the environment.1-2 

Comparing to bulky materials, observing single molecules is much harder. For decades, people 

have been working towards the probing and characterization on single molecules and have 

developed multiple methods: single-molecule spectroscopy (SMS) techniques3-5 can realize 

molecular level spatial resolution with a rather large vision via fluorescence; scanning probing 

microscopes, such as atomic force microscope (AFM)6-10 and scanning tunneling microscope 

(STM),11-15 can visualize molecules of very high resolutions.  

Scanning tunneling microscope-break junction (STM-BJ) is a specialized STM technique 

focusing on the characterization of electronic properties on the single-molecular level.16-17 In a 

basic STM-BJ experiment, the conductance of a metal-molecule-metal junction bridging across 

two electrodes is measured. Usually, one molecule forms only one kind of molecular junction and 

translates into one signal in the STM-BJ results. However, some molecules, like imidazole 

derivatives with strong intermolecular interactions, can form multiple types of molecular junctions 

and result in multiple signals.18 When we study chemical reactions at single-molecular level via 

STM-BJ techniques, the systems would inevitably contain more than one species and thus are also 

with mixed signals. 

To monitor a chemical reaction process, we need to determine the ratio between reactants 

and products over time. Specific to a chemical reaction happening in the STM-BJ environment, 

we need a method to attribute each measured junction to its corresponding molecule/species, and 

to realize this, we resort to machine learning-based analysis. Machine learning methods, from 
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correlation analysis to neural networks, have been proved effective on data measured with STM-

BJ and other single-molecular techniques.19-25 Inspired by these studies, we design a convolutional 

neural network-based deep learning model to realize the state-of-the-art accuracy of the 

classification of STM-BJ traces.26 Our high-accuracy classification algorithm, along with other 

evolving methods, allows more precise identification of STM-BJ traces and paves the way towards 

further detailed research on single-molecular chemistry via STM-BJ. 

1.1 Single-Molecule Junctions and Experimental Methods 

A molecular junction is a device in which a single molecule binds to two electrodes. By 

the form of a molecular junction, we can easily measure many properties of a molecule with 

multiple experimental techniques. For metal electrodes like Au or Ag, they usually bind to the 

molecules through dative bonds with some lone pair-donating functional groups, such as amino or 

thiomethyl groups, or covalent bonds with thiol anions.27-28 Besides metal electrodes, a molecule 

can also bind to modified carbon electrodes like graphene or carbon nanotubes via amide bonds.29-

30 Other than binding though bonds, molecules can bind to electrodes with intermolecular 

interactions like π-metal interaction to Au electrodes or π-π interaction to carbon electrodes, etc.31-

32 Compared to other electrode materials, Au has better properties like ductility and chemically 

inertness and thus is more studied. 

There are multiple methods developed in recent decades to construct metal-molecule-metal 

junctions. Among them, mechanically controllable-break junction (MC-BJ)33-34 and scanning 

tunneling microscope-break junction (STM-BJ)16-17 are the most popular methods. In these 

techniques, the distance between the two metal electrodes is controlled by a piezoelectric actuator, 

and the molecular junction between these electrodes can form and rupture repeatedly through this 

motion control. Electro-migration (EM) is another method to construct persisting metal nanogaps 
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and then construct molecular junctions.35-36 In this work, all the molecular junction studies are 

conducted with the STM-BJ setup. 

In an STM-BJ setup, we usually use one Au tip and one Au-coated steel substrate as the 

two electrodes. A single STM-BJ measurement starts with the two electrodes smashed together 

and then we begin to pull them away from each other. As the displacement between electrodes 

increases, the bulk Au-Au contact gradually yields into a single-atomic Au-Au point contact. Once 

this point contact breaks, if there is a molecule bridging the two electrodes, the corresponding 

molecular junction forms. Finally, as the elongation continues to increase, the molecular junction 

will also break. During this process, the bias and current across the junction are continuously 

recorded and a conductance trace is generated. This whole process can be done under ambient 

condition, and we usually conduct our measurements in a solution of the target molecule. Thus, 

this procedure can be easily set up and repeated thousands of times for statistical analysis. 

While measuring the junction conductance, many other properties of the junction can be 

studied in parallel using customized STM-BJ setups. For example, by putting an AFM cantilever 

in the position of the upper electrode, the force across the junction can be measured together with 

the conductance;37-38 with laser or photon detector align with the junction, its photoconductance 

effects such as photon-assisted transport or light emission can be examined.39-40 Nevertheless, 

other mechanisms such as thermopower, magnetoresistance, etc. can also be studied with the STM-

BJ technique.41-50 

Additionally, STM-BJ is also useful for chemistry research. The in-situ chemistry taking 

place in the STM-BJ environment is a recent and fascinating finding. STM-BJ provides an 

environment of very intense electric field which shows catalytic activity. Chemical reactions can 

also happen with the electrode material or electrons/holes. In recent studies, people have found 
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redox reactions, electric field-catalyzed intra- and intermolecular reactions taking place in situ 

during break junction experiments.51-56 

In this work, we use STM-BJ to measure solutions of pure molecules, mixtures, and 

systems which could undergo in-situ chemical reactions. Moreover, we study the mechanisms of 

STM-BJ experiments by analyzing the collected data. 

 

Figure 1.1: An example STM-BJ conductance trace. The drawings illustrate difference phases 

in an STM-BJ experiment. Top-left: bulk Au-Au contact; top-right: single-atomic Au point 

contact, whose conductance equals to 1 G0; bottom-left: metal-molecule-metal junction 

 

1.2 Data Analysis in Break Junction 

As we discussed in Chapter 1.1, during the measurement of every single STM-BJ trace, 

the conductance of the junction is calculated and recorded continuously as a function of 

displacement. In Figure 1.1 we show an example of such conductance versus displacement trace. 

At the beginning of the trace, when the bulk contact remains, the conductance is high. Then, the 

conductance drops to an intrinsic number as the interface between electrodes narrows into a single-

atomic contact; for Au electrodes, the conductance of this single-atomic Au-Au point contact is 1 

G0, where G0 is the conductance quantum and 1 G0 = 2e2/h. After the rupture of this point contact, 
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if there is a molecule bridging the junction, we can observe a conductance plateau typically lower 

than 1 G0, which reflects the conductance of the metal-molecule-metal junction. Finally, after 

junction rupture, the conductance falls to the noise floor. 

In STM-BJ research, the most popular way of data analysis is through creation of histogram. 

Figure 1.2a shows the one-dimensional histogram (1DH) of the trace shown in Figure 1.1 To make 

this single trace 1DH, we divide the conductance axis into many bins and count the number of data 

points that fall in each bin. After adding up thousands of single-trace 1DHs from an STM-BJ 

experiment with a molecule and calculate the average, to obtain the 1DH for the experiment 

(Figure 1.2b). From the 1DH of the experiment, we can see the characteristic conductance value 

of the molecular junction. Compared to single-trace histograms, the histogram of the whole 

experiment shows better-shaped conductance peak (usually Gaussian if logarithmically binned) 

after averaging over a large number of trace samples. If we construct bins on both the conductance 

and displacement axes, we get a single-trace two-dimensional histogram (2DH) as shown in Figure 

1.2c and then the average 2DH of experiment shown in Figure 1.2d. From a 2DH, we can find the 

characteristic conductance, the extension of a molecular junction and the junction formation 

probability. 

 

Figure 1.2: Logarithm-binned conductance histograms: (a) a single-trace 1DH and (b) the 1DH 

of the whole experiment, with the Gaussian fit of the molecular conductance peak in red 

dotted line; (c) a single-trace 2DH and (d) the 2DH of the whole experiment. 
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If there is only one kind of molecular junction in the system, there will be only one 

conductance peak in the histograms. However, for complicated systems with more than one species, 

there can be more than one peak, and these peaks can overlap with each other and increase the 

difficulties in distinguishing them. Nevertheless, since the plateau length of species may vary, we 

cannot simply determine the ratio between species to be the ratio between peak areas in histograms. 

Thus, individual trace analysis is needed for such studies. 

We can break down the workflow of individual trace analysis into two steps: describing a 

trace and analyzing the description. On the description side, a straightforward method is to 

manually select several parameters to describe a trace, such as conductance, noise, etc. Another 

popular method is to use single trace histograms to represent a trace; there are several studies 

making use of single trace 1DHs or 2DHs. Besides these methods, we can also feed the analysis 

algorithm with the raw trace. This methodology could prevent information loss during construction 

of histograms, but it requires a specially-designed analysis algorithm to receive it. Speaking of the 

analysis algorithms, most of the works use clustering, which is a class of unsupervised machine 

learning algorithms we will discuss later, and some use other methods such as linear decomposition, 

neural networks, etc. With a high-accuracy single trace analysis tool, we can achieve more precise 

ratio analysis or realize the monitoring on in-situ chemical reactions. 

1.3 A Brief Introduction to Machine Learning Methods 

Machine learning is a methodology to build models and pipelines to automatically make 

predictions or decisions. A machine learning algorithm generates a model based on reference data, 

and then we can use this model to generate output on the target data. When the reference data is 

labeled, which means it comes with corresponding dependence variable values, the learning 

diagram is called a supervised learning approach. When the reference data is not labeled, it is 
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called an unsupervised learning approach, while in this case, the reference dataset is often the 

target dataset that we want the model to generate output on. 

Most of the well-known machine learning algorithms are for supervised learning. For 

example, linear regression is one of the simplest supervised algorithms, where we need to provide 

both the independent variables and the dependent variable together to calculate the model 

coefficients. Decision tree-based algorithms is an important type of supervised learning 

algorithms.57-58 A decision tree is a tree structure where each of the tree nodes contains an if-then-

else clause, for example, “if x < 0 then go to the left child, else go to the right child”, and the 

outcome of a tree is determined by the whole path. By combining multiple nodes in a series, a 

decision tree can introduce non-linearity which is important for many problems. The XOR problem 

illustrated in Figure 1.3a is one of these non-linear problems that cannot be approached with linear 

models such as linear regression. A decision tree, however, by combining more than one layer, can 

easily fit this XOR function (shown in Figure 1.3b). This property makes decision trees very useful. 

Many popular models are some forms of assembly of a series of decision trees, such as random 

forest and XGBoost.59-61  

 

Figure 1.3: (a) The XOR function, z = x ^ y. (b) The decision tree approach towards the XOR 

function. (c) The neural network approach towards the XOR function. The ReLU function is 

defined as ReLU(x) = x, x > 0; 0, x ≤ 0. 

Unlike supervised learning, in an unsupervised learning task, there is no labeled reference 

dataset. Many machine learning-based studies on STM-BJ data are by unsupervised learning. 
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Clustering is one important class of unsupervised learning. In a clustering task, the algorithm aims 

to partition the given data points into several different clusters, without extra information. For 

example, given a set of STM-BJ traces, we may deploy a clustering algorithm to separate them 

into different types, for example, with and without a molecular plateau. The most important 

clustering algorithm is known as K-Means. The K-Means algorithm minimizes the distance 

between a point and the geometric center of the class to which this point belongs, and thus all the 

points within a class are close to each other. Thus, before fitting the model we need to manually 

choose the number clusters, and then we can fit the model by iteration. Other than K-Means, there 

are other popular clustering methods such as spectral clustering,62 DBSCAN.63 Besides clustering, 

principal components analysis (PCA), deep autoencoders,64 etc. are also considered as 

unsupervised learning methods.  

Neural network is an important structure of model, which can be applied in both supervised 

and unsupervised tasks. A big neural network with many layers and a large number of coefficients 

can approach a very complicated underlying function. One layer in a neural network is usually 

implemented as a matrix multiplication where the input vector right times the coefficient matrix 

and results in the output vector. Between layers, this data vector undergoes an element-wise 

activation function. The rectified linear units (ReLU) is a popular activation function, where 

ReLU(x) gives x when x > 0, and 0 when x ≤ 0. These non-linear activation functions enable neural 

networks to approach non-linear functions, for example, the XOR function (shown in Figure 1.3c). 

When a neural network contains more than three layers, it is usually called a deep learning structure. 

Among all types of deep learning structures, the convolution neural network (CNN) is very widely-

used in image processing65 and is particularly important for STM-BJ studies. CNN is a neural 

network structure where some of the layers are replaced by convolutional layers, where a 
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convolutional layer conducts a convolution (cross-correlation) operation between the input and a 

set of coefficients called “kernels”. The nature of convolution operation in combination with a 

small kernel size makes a convolutional layer sensitive to local patterns. This structure assumes 

and exploits the spatial local correlation in the inputs, which is true for images and is also true for 

STM-BJ traces: the conductance difference between a series of neighboring pixels determines 

whether it is a conductance drop or a plateau. We find the CNN structure works very well on cases 

of STM-BJ conductance traces as we can regard them as one-dimension images. 

In this work, we introduce a CNN-based deep learning structure that realizes high-accuracy 

classification on STM-BJ traces. We also demonstrate machine learning methods-assisted analysis 

on STM-BJ experiment mechanisms. 

1.4 Outline 

The remainder of this thesis will focus on the machine learning-assisted analysis on STM-

BJ data. We will accomplish this by conducting experiments on multiple STM-BJ systems and 

building models with machine learning algorithms. An outline of the remaining chapters of this 

thesis will be: 

Chapter 2 presents work characterizing a series of molecules with imidazolyl linkers. We 

show each of these molecules forms three types of junctions. We further reveal that the high-

conductance type among these three is a bimolecular junction as the π-π interaction between two 

imidazole rings is strong enough to stabilize this junction. 

Chapter 3 introduces a new automatic model for classification of STM-BJ traces. We 

construct this model employing a convolutional neural network structure. This model performs 

excellently on experimentally measured mixture of molecules as well as system of in-situ chemical 

reaction, and outruns the existing methods. 
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Chapter 4 demonstrates work investigating the junction formation mechanism. We study 

the relation between the evolution of Au contact and some key parameters such as the relaxation 

of Au electrodes after junction rupture. According to our findings, we conclude that the molecule 

of a junction is already bridging across the electrodes before the Au contact breaks. 
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Chapter 2. Enhanced Coupling Through π-Stacking in  

Imidazole-Based Molecular Junctions 

This chapter is based on the manuscript entitled Enhanced Coupling Through π-Stacking 

in Imidazole-Based Molecular Junctions by Tianren Fu, Shanelle Smith, María Camarasa-Gómez, 

Xiaofang Yu, Jiayi Xue, Colin Nuckolls, Ferdinand Evers, Latha Venkataraman and Sujun Wei 

published in Chemical Science. Shanelle Smith, Xiaofang Yu and Jiayi Xue of Prof. Sujun Wei 

group synthesized and characterized all the compounds.18 I performed the conductance 

measurements and data analysis. Dr. María Camarasa-Gómez of Prof. Ferdinand Evers group and 

I conducted the theoretical calculation. 

In this work, we demonstrate that imidazole based π-π stacked dimers form strong and 

efficient conductance pathways in single-molecule junctions using the scanning-tunneling 

microscope-break junction (STM-BJ) technique and with density functional theory-based 

calculations. We first characterize an imidazole-gold contact by measuring the conductance of 

imidazolyl-terminated alkanes (im-N-im, N = 3–6). We show that the conductance of these alkanes 

decays exponentially with increasing length, indicating that the mechanism for electron transport 

is through tunneling or super-exchange. We also reveal that π-π stacked dimers can be formed 

between imidazoles and have better coupling than through-bond tunneling. These experimental 

results are rationalized by calculations of the molecular junction transmission using non-

equilibrium Green’s function formalism. This study verifies the capability of imidazole as a Au-

binding ligand to form stable single- and π-stacked molecule junctions at room temperature. 
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2.1 Introduction 

Imidazole is an aromatic five-member-ring structure with two nitrogen atoms, one 

pyridine-like and one pyrrole-like nitrogen (N-3 and N-1 as shown in Figure 2.1). The lone pair 

electrons on the pyridine-nitrogen coordinates with metals or with protons. Additionally, the 

electron-rich characteristic of imidazole also enables versatile intermolecular non-covalent 

interactions, such as accepting hydrogen bond or enhancing π-π interactions. Imidazole thus has 

varied functionality. For example, as a functional group of the amino acid histidine, it is the active 

binding site in superoxide dismutases;66-67 it also acts as a Brønsted base in serine 

endopeptidases.68 In metal organic frameworks (MOFs), it is used as a bidentate but non-chelating 

ligand.69 Despite these broad functionalities, the electronic characteristics of imidazole as a Au-

binding ligand has not yet been tested. 

 

Figure 2.1: The molecular structure of imidazole, and IUPAC numbering of atoms. 

 

2.2 Results and Discussion 

Here, we applied the scanning tunneling microscope-based break-junction (STM-BJ) 

method to create and characterize imidazole-based molecular junctions.16-17 We synthesized four 

imidazole-terminated alkane molecules with an 1,ω-di(imidazol-1-yl)alkanes (im-3-im, im-4-im, 

im-5-im and im-6-im) chemical structure, as shown in Figure 2.2a. The synthesis is detailed in 

Section 2.4.1. 

STM-BJ measurements are conducted under ambient condition at room temperature as has 

been described before.70 Junctions are formed between a Au substrate and tip from a ~1 mM 
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solution of the target molecule in 1,2,4-trichlorobenzene (TCB). Each individual measurement 

starts by smashing the tip into the substrate to create a Au-Au contact. The tip is then withdrawn 

while the conductance, (current/voltage), is measured as a function of the relative tip/substrate 

displacement and this is repeated at least 5,000 times for each molecule. The individual traces are 

compiled into logarithmically binned conductance histograms.71 

 

Figure 2.2: (a) The chemical structures of im-N-im molecules. (b) Logarithmically-binned 

conductance histograms (100 bins per decade) for all four molecules generated from 15000 

traces each. The three peaks, two that change with the molecular backbone length and the one 

that is independent of the backbone length are indicated by the arrows for im-4-im. 

Histograms are terminated at the noise floor. (c) Molecular junction conductance, determined 

from a Gaussian fit, is plotted against the number of methylene units in the backbone. The β 

values determined from the fit are 0.93 (low-G) and 1.01 (high-G), per methylene. 

Figure 2.2b shows 1D conductance histograms for all four molecules. 2D conductance-

displacement histograms are shown in supplementary Figure 2.5. All measurements are performed 

at a 900 mV bias. Note that the bias does not affect conductance for these molecules (see 

supplementary Figure 2.6). A clear peak at ~1 G0 (G0 = 2e2/h, the conductance quantum) is seen 

due to the reproducible formation of a single atom Au contact. The molecular junction conductance 
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peaks occur over a range of 10-4 to 10-6 G0 and show a decreasing conductance with increasing 

backbone length. This can be attributed to a ballistic tunneling transmission through molecular 

junction. In addition, for every histogram, there is a broad feature at around 10-3 G0 which we 

attribute to an intermolecular π-π stacked complex that we will discuss in detail further below.72-

77 Further inspection of the molecular conductance peak reveals that it is actually two peaks, similar 

to what is observed for pyridine-based linkers.78-80 Since the imidazole linker is binding to Au with 

its pyridine-nitrogen, it can form a vertical, primarily σ-coupled junction (left) or a tilted σ- and π-

coupled junction (right) as illustrated in the inset of Figure 2.2c. As the differences between these 

two binding configurations has been investigated in detail for pyridine linkers before,80-81 in the 

following discussion, we will focus primarily on the lower-conducting σ-coupled configuration. 

Figure 2.2c plots the peak conductance value of each molecule against molecular length. 

The solid circles represent the conductance of the σ-coupled configuration with a lower-

conductance (low-G), and the hollow circles represent the conductance of the tilted configuration 

(high-G). Both series show an exponential decay in conductance with increasing molecular length. 

We fit these experimental data with tunneling transmission model: 𝐺𝑁 = 𝐴𝑒−𝛽𝑁, and obtain a 

decay constant, β = 0.93 and 1.01 per methylene for the low-G and high-G configurations 

respectively. This β value agrees with measurements of alkyl molecules with other linkers,27, 82 

and confirms that these follow a tunneling mechanism. By extending the fit to N = 0, we estimate 

the conductance of a molecule with no carbon bridging the two imidazole groups; the inverse of 

this conductance serves as a metric for the linker contact resistance. For the imidazole linker, we 

obtain a contact resistance of 65 MΩ for the low-G series. As a comparison, the contact resistance 

for some other common linkers are: -SMe: 0.27 MΩ, -NH2: 0.37 MΩ and -PMe2: 0.13 MΩ.27 We 

can also compare imidazole with pyridine which has a contact resistance of 23 MΩ as determined 
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from a direct measurement of 4,4’-bipyridine.79 Although clearly larger than small linkers, 

imidazole is comparable to pyridine. 

 

Figure 2.3: (a) The junction geometry of im-4-im. (b) The calculated transmission functions of 

all the four molecules. Inset: Linear fit of transmission at Fermi energy of each molecular 

junction. (c) The scattering states for the im-4-im junction determined at the energies 

corresponding to the two peaks closest to the Fermi energy, as indicated in the figure. 

We now turn to transport calculations based on density functional theory (DFT), and 

compute the electronic transmission through Au-im-N-im-Au junction models. We employ the 

FHI-aims package83-84 with a PBE exchange-correlation functional85 and apply a non-equilibrium 

Green’s function formalism implemented within AITRANSS package.86-87 The structure of a low-

G im-4-im junction is shown in Figure 2.3a, using the VESTA program.88 Each electrode consists 
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of a pyramidal cluster of 55 Au atoms, arranged in 6 layers in the (111) direction with closest 

interatomic distance of 2.88 Å. The im-N-im molecules are in fully relaxed in an all-anti 

conformation in gas phase and imidazole is bound to the apex atom of Au electrode in a vertical 

geometry, a structure that represents the lower conducting junction.  

The transmission function for all four molecules studied are similar as shown in Figure 

2.3b. The transmission at Fermi (EF) has a strong contribution from the molecular HOMO-4 and 

HOMO-2 based σ-channels that decay across the molecular backbone, as can be seen from the 

isosurface plots for im-4-im shown in Figure 2.3c (the structures in blue frame). The transmission 

peak at around –1.6 eV relative to EF (on the occupied side) represents transmission through the 

molecular HOMO-8 which is also primarily a σ-based orbital (the structure in green frame). The 

transmission peak at around +2.3 eV relative to EF results from the weakly coupled π-based 

molecular LUMO (the structure in orange frame). The transmission at the EF decreases 

exponentially with increasing molecular length, in agreement with the experimental results. The 

calculated conductance values, obtained by applying the Landauer formula to the transmission at 

EF, are plotted against the molecular length in the inset of Figure 2.3b. The calculations 

overestimate conductance due to known errors with DFT89 which in turn can also alter the 

calculated β value. We find that the calculated β value is 1.10/methylene, slightly higher than the 

experimental one. 

We now turn to the molecular conductance peak seen around 10-3 G0 for all the molecules 

in this series as shown in Figure 2.2b. We attribute this peak to junctions formed by an 

intermolecular π-π stacked dimer, (see Figure 2.4a and 2.4b). Such a π-π stacked dimer has been 

observed in aniline derivatives where the contribution of the N-pz orbital is significant to enhance 

the intermolecular interaction.90 The pyrrole nitrogen on the imidazole ring can play a similar role 



17 

 

enhancing the electron density in the imidazole π system and augmenting π-π interactions. To 

confirm this hypothesis, we measure the conductance of 1-methylimidazole (im-1) which has only 

one Au-binding site. The 1D histogram from STM-BJ measurements of im-1 is shown in Figure 

4c, together with the histogram of im-4-im. Im-1 gives a single peak at ~10-3 G0 that overlaps with 

the peak also observed for all im-N-im molecules. 

 

Figure 2.4: (a) The structure of a π-π stacked 1-methylimidazole (im-1) dimer junction used in 

the DFT calculations. (b) The charge-separated resonance state that stabilizes the π-π stacked 

dimer. (c) Logarithmically-binned conductance histogram for im-1 and im-4-im measurements. 

(d) Two-dimensional histogram of PSD/G against the average junction conductance G. (e) 

Calculated transmission functions of an im-1 dimer junction along with that of the molecular 

im-4-im junction. (f) The transmission at Fermi of im-1, together with im-N-im plotted against 

the junction N-N distance (left axis). The corresponding experimental data is also shown (right 

axis). 
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Since im-1 has only one Au-binding site, it can only form a π-π stacked junction. We 

therefore use flicker noise measurements, which have been used to distinguishes through-space 

transmission from that of through-bond91 to confirm this hypothesis. Flicker noise measurements 

are conducted by first forming an im-1 dimer junction, holding this for 150 ms and analyzing the 

conductance, measured with a 100 kHz bandwidth. Two quantities are calculated from the 

conductance data while the junction is held: the average conductance (G), and the normalized noise 

power in the form of power spectrum density (PSD). The PSD is obtained from the square of the 

integral of the discrete Fourier transform of the measured conductance between 100 Hz to 1,000 

Hz. The lower frequency limit is constrained by the mechanical stability of the setup. The upper 

limit is determined by the input noise of the current amplifier. Using these quantities, we create 

2D histograms of the normalized noise power against the average conductance from 8,556 traces. 

The relation between noise power and conductance is extracted by determining the scaling 

exponent (N) for which PSD/GN and G are not correlated. We have previously shown that the 

relationship between flicker noise PSD and conductance G follows a power law dependence (PSD 

~ GN) with the exponent N being indicative of the electronic coupling type. N close to 2 indicates 

a through-space coupled molecular junction, while an exponent N of 1 indicates a through-bond 

coupling. Figure 4d shows the 2D histogram of PSD/G against G where a clear positive correlation 

is visible. For im-1, the correlation between PSD/GN and G goes to zero when N = 1.9. This is a 

clear indication to a through-space transmission. We can therefore attribute the conductance peak 

at around 10-3 G0 to one that involves a through-space coupled intermolecular imidazole dimer. 

To compare this to the calculated transmission, we model the junction as illustrated in 

Figure 4a; the geometry is optimized within DFT including van der Waals interactions following 

the methods developed by Tkatchenko and Scheffler.92 We find that the DFT-relaxed structure has 
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the two im-1 molecules separated by a ~3.3 Å gap and stabilized by 0.41 eV when compared to 

two isolated molecules. For the imidazole ring, an electron-rich pyrrole nitrogen and an electron-

withdrawing pyridine nitrogen increase the dominance of its charge-separated resonance structure 

shown in Figure 2.4b. Thus, imidazole π-π stacked dimer is more strongly bound than benzene 

dimer (which is stabilized by only 0.15 eV). The transmission across this junction is shown in 

Figure 2.4e. At EF, the transmission of the dimer im-1 is ~100 times that of the molecular im-4-

im junction, in agreement with experiment. For the π-π stacked dimer junction of im-4-im, the 

calculated transmission is close to that of dimer im-1 junction (see Supplementary Information). 

The results here confirm that the conductance peaks around 10-3 G0 in Figure 2.2b arise from 

intermolecular π-π stacked dimer junctions as shown in Figure 2.4b, and thus the length of alkyl 

chain in im-N-im series is not important. In Figure 2.4f, we plot the transmission at EF and the 

measured conductance against the calculated through-space distance between the two imidazole 

nitrogens that are directly bound to Au atoms. Interestingly, although the two electrodes are not 

bridged by one molecule, the π-π stacked dimer structure can still give roughly a same conductance 

as a single-molecule junction of similar length, in contrast to what is typically expected for such 

weakly coupled systems.93 

2.3 Conclusions 

In summary, we have investigated the ability of imidazole to function as an aurophilic 

linker for molecular junctions using the STM-BJ technique. We find that the conductance of four 

imidazole-terminated alkanes have a β value that is consistent with that found for other linkers. 

This provides an outlook to direct measurement on the electronic properties of some imidazole-

containing biologically relevant systems. Importantly, we also demonstrated that imidazole can 
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form stable π-π stacked dimers that have a relatively high through-space conductance, which 

therefore function as the smallest functional group forming stable π-π stacked dimers. 

2.4 Supplementary Information 

2.4.1 Synthetic Details 

Materials and Instrumentation.  All commercially available chemicals, including the 1-

methylimidazole (im-1), were used as received without further purification unless otherwise noted. 

All reactions were performed in oven-dried round bottom flasks, unless otherwise noted. The 

flasks were fitted with rubber septa and reactions were conducted under a positive pressure of 

nitrogen, unless otherwise noted. Flash column chromatography was performed employing 

Biotage Isolera One (10 or 25 gram SNAP silica gel column). Thin- layer chromatography (TLC) 

was performed on silica gel 60 F254 plates (EMD). 

1H and 13C nuclear magnetic resonance spectra were recorded at 300 K (unless otherwise 

noted) on Bruker DRX400 (400 MHz) or Bruker DRX500 (500 MHz) FT NMR spectrometers at 

Department of Chemistry and Biochemistry, CUNY Queens College. High-resolution mass 

spectra were recorded on high resolution mass spectrometers using either electrospray ionization 

(ESI) or atmospheric pressure chemical ionization (APCI) method at CUNY Hunter College Mass 

Spectrometry. 

 

1,3-di(1H-imidazol-1-yl)propane (im-3-im):94  

To a stirring solution of dry imidazole (544.8 mg, 8 mmol) in 25 mL anhydrous THF, NaH 

(320 mg, 60% wt. in mineral, 8mmol) was slowly added at 0 oC under N2. The resulting mixture 
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was allowed to warm up to room temperature for 30 minutes, and then cooled down to 0 oC again. 

1,3-dibromopropane (0.4 mL, 4 mmol) was added as neat to the above solution. The mixture was 

allowed to slowly warm up to room temperature and stir overnight. The mixture was quenched 

with water (15 mL); then it was extracted with dichloromethane (50 mL x 3). The combined 

organic solvents were washed with brine and dried over Na2SO4. After removing the solvent, the 

residue was purified by flash chromatography in 5% of methanol in dichloromethane to give a 

colorless oil im-3-im (162 mg, 23% yield). 1H NMR (400MHz, CDCl3, ppm): δ 7.45 (s, 2H), 7.11 

(s, 2H), 6.89 (s, 2H), 3.92 (t, J = 8.0 Hz, 4H), 2.29 (m, 2H). 13C NMR (100MHz, CDCl3, ppm): δ 

136.9, 129.6, 118.5, 43.2, 31.6.1 HR-MS m/z calcd for C9H12N4: 176.1063, found: 177.1135 

(M+H+). 

 

1,4-di(1H-imidazol-1-yl)butane (im-4-im):95 

Imidazole (1.7 g, 25 mmol) and NaOH (1 g, 25 mmol) in 10 mL DMSO were heated to 60 

oC for 1 hr, followed by addition of 1,4-dichlorobutane (1.40 mL, 12.5 mmol). The resulting 

mixture was stirred at 60 oC overnight. After cooling down to room temperature, 100 mL DI water 

was added and the mixture was vigorously stirred for 30 min. The white precipitate was collected 

by vacuum filtration and washed with plenty of DI water. The solid was dried in air first and then 

under high vacuum to give 1.2 g of im-4-im as white solid in 50% yield. 1H NMR (400MHz, 

CDCl3, ppm): δ 7.44 (s, 2H), 7.07 (s, 2H), 6.86 (s, 2H), 3.93 (m, 4H), 1.76 (m, 4H). 13C NMR 

(100MHz, CDCl3, ppm): δ 137.1, 129.9, 118.7, 46.5, 28.2.2 HR-MS m/z calcd for C10H14N4: 

190.1221, found: 191.1293 (M+H+). 
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1,5-di(1H-imidazol-1-yl)pentane (im-5-im):96 

Imidazole (1.7 g, 25 mmol) and NaOH (1 g, 25 mmol) in 10mL DMSO were heated to 60 

oC for 1 hr, followed by addition of 1,5-dibromopentane (1.7 mL, 12.5 mmol). The resulting 

mixture was stirred at 60 oC overnight. After cooling, the mixture was diluted with water (100 mL); 

then it was extracted with dichloromethane (150 mL x 3). The combined organic solvents were 

washed with water, brine, dried over Na2SO4. After removing the solvent, the residue was purified 

by flash chromatography in 3.3% of methanol in dichloromethane to give a colorless oil im-5-im 

(0.72 g, 28% yield). 1H NMR (500MHz, CDCl3, ppm): δ 7.44 (s, 2H), 7.06 (s, 2H), 6.87 (s, 2H), 

3.93-3.90 (m, 4H), 1.81-1.75 (m, 4H), 1.29-1.26 (m, 2H). 13C NMR (125MHz, CDCl3, ppm): δ 

137.0, 129.5, 118.7, 46.7, 30.6, 23.7.3 HR-MS m/z calcd for C11H16N4: 204.1376, found: 205.1449 

(M+H+). 

 

1,6-di(1H-imidazol-1-yl)hexane (im-6-im):97 

Imidazole (1.7 g, 25 mmol) and NaOH (1 g, 25 mmol) in 10mL DMSO were heated to 60 

oC for 1 hr, followed by addition of 1,6-dibromohexane (1.89 mL, 12.5 mmol). The resulting 

mixture was stirred at 60 oC overnight. After cooling, the mixture was diluted with water (100 mL); 

then it was extracted with dichloromethane (150 mL x 3). The combined organic solvents were 

washed with water, brine, dried over Na2SO4. After removing the solvent, the residue was purified 

by flash chromatography in 3% of methanol in dichloromethane to give a colorless oil im-6-im 
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(0.96 g, 35% yield). 1H NMR (500 MHz, CDCl3, ppm): δ 7.44 (s, 2H), 7.05 (s, 2H), 6.88 (s, 2H), 

3.92-3.89 (m, 4H), 1.77-1.74 (m, 4H), 1.30-1.27 (m, 4H). 13C NMR (125 MHz, CDCl3, ppm): δ 

137.0, 129.4, 118.7, 46.8, 30.9, 26.1.4 HR-MS m/z calcd for C12H18N4: 218.1531, found: 219.1603 

(M+H+). 

2.4.2 Additional Experimental Data 

 

Figure 2.5: 2-Dimensional conductance histograms, log-binned (100 bins per decade) on 

conductance axis and linear-binned (100 bins per 0.08 nm) on the displacement axis, for (a) im-

3-im, (b) im-4-im, (c) im-5-im, (d) im-6-im and (e) im-1. 

Figure 2.5 shows the 2-dimensional conductance histograms of the molecules investigated 

in the main text. From a 2D histogram, an approximate length of junction can be read. Comparing 

these histograms, we can see the π-π stacked dimer peaks have roughly the same length across this 

series, while the molecular conductance peaks are longer for the longer molecules.  

In the theory section, we applied the simplified Landauer formalism and compared the 

measured conductance with the calculated transmission at Fermi energy, which is typically valid 

for low-bias measurement. In our experiment, however, a relatively high bias (900 mV) is applied 

to increase the signal to noise in our measurements. For im-N-im junctions, the calculated 
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transmission functions are relatively flat in the ±0.5 eV region, and thus our approximation is still 

valid. Figure 2.6 shows the conductance histograms of im-4-im measured under 90, 180, 360 and 

540 mV biases. Compared to the 900 mV measurement, these conductance peaks measurement 

under different biases are at nearly identical positions (although the low-G peak under 90 mV is 

below the noise floor). This rationalizes the approximation we applied here. 

 

Figure 2.6: (a) 1D histograms of im-4-im under 90, 180, 360 and 540 mV biases, comparing 

compared to the same molecule measured under at a 900 mV bias (black line, histogram in the 

main text. (b) 2D histograms of im-4-im under 90, 180, 360 and 540 mV biases); the histogram 

of 180, 360 and 540 mV are from only 5,000 traces. 

2.4.3 Binding Energy 

We estimate the binding energy between imidazole’s pyridine nitrogen and gold by DFT-

based calculations. Here, 20-atom Au pyramids form the electrode. The total energies of an 

individual Au20 pyramid (-10713066.248 eV) and an individual im-4-im molecule (-16556.448 

eV) are calculated, to compare with the total energy of the im-4-im + Au20 complex (-

10729623.681 eV). The energy difference of 0.98 eV between the complex and the sum of a Au20 

pyramid and an individual molecule is the binding energy between an imidazole and an Au 

electrode. In these calculations, the im-4-im molecule is allowed to relax fully to determine an 

optimum geometry, while Au atoms are held fixed. We also estimate the two-site binding energy 
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by calculating the total energy of the Au20- im-4-im - Au20 complex (-21442690.850 eV). 

Following the same method, the binding energy per site from this calculation is just slightly lower 

(0.95 eV). We must keep in mind that these bind energies are estimates given the constraints used. 

2.4.4 Additional Theoretical Calculations 

For calculations with Au clusters, we applied double-ζ basis set (FHI-aims “light” setup) 

to make the calculations less expensive. To determine if this will significantly lower the quality of 

calculation, here we repeat the same calculations on im-4-im and im-1 dimer junctions, with 

double-ζ plus polarization basis set (FHI-aims “tight” setup) employed on light atoms (H, C, N 

and O). In Figure 2.7, these calculated transmission functions are compared with transmission 

functions of im-4-im and im-1 dimer junctions shown in the main text. In the region close to Au 

Fermi energy level, these variations of theoretical methods show tolerably small difference. 

 

Figure 2.7: Calculated transmission of im-4-im monomer and im-1 dimer junctions using FHI-

aims double-ζ basis (light) for all atoms and with FHI-aims double-ζ plus polarization basis 

(tight) for the molecule and light for Au atoms. 

To verify that the dimer junction of im-N-im has comparable transmission with that of a 

im-1 dimer junction, we determine the transmission for a π-π stacked im-4-im dimer. The two im-

4-im molecules have in gauche conformation due to the steric hindrance of the gold electrodes, as 
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shown in Figure 2.8a. The calculated transmission function of this junction is compared with that 

of an im-1 dimer junction and a molecular im-4-im junction in Figure 2.8b. The dimer junction 

with either im-4-im or im-1 gives very similar transmission especially around the Fermi energy. 

The sharp peaks between -1 and -2 eV for im-4-im dimer junction are Fano-resonances induced 

by the alkane side chains. This rationalizes the observation that im-N-im molecules have the π-π 

stacked dimer peak within the same range of conductance as im-1. 

 

Figure 2.8: (a) The structure of the π-π stacked im-4-im dimer junction with alkane backbones 

adapting a gauche conformation. (b) The calculated transmissions for this junction (dotted 

blue line), along with that of the im-1 π-π stacked dimer junction (grey) and molecular im-4-

im junction (blue). 

2.4.5 Additional Flicker Noise Analysis 

To further verify the origin the π-stacked conductance peaks and molecular conductance 

peaks of im-N-im molecules, we measure and analyze the flicker noise of im-4-im. As the same 

as the measurement on im-1 described in the main text, the measurements are also conducted by 

holding an im-4-im junction for 150 ms, with a 100 kHz bandwidth. The power spectrum density 

(PSD) is also defined as the square of the integral of the discrete Fourier transform of the measured 

conductance between 100 Hz to 1,000 Hz. During the measurement, we cannot selectively form a 

certain type of junction. We did selection based on conductance and analyse selected traces instead. 
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Figure 2.9: (a) The plotted correlation between PSD/GN and the average junction conductance 

G versus the scaling exponent N and (b) the 2D histogram of PSD/G against G of the π-stacked 

peak of im-4-im. (c) The plotted correlation between PSD/GN and G versus N and (d) the 2D 

histogram of PSD/G against G of the molecular conductance peaks of im-4-im. 

Here, we first select the 2,612 traces with conductance at around 10-3 to 10-4 G0 and analyse. 

These traces consist the π-stacked conductance peaks. We also did the correlation analysis between 

PSD/GN and the conductance G, and find they are independent when the scaling exponent N = 

1.88, as shown in Figure 2.9a. The N close to 2 indicates this peak to be a through-space 

transmission peak and verifies our theory. The 2D histogram of PSD/G against G (Figure 2.9b) 

shows a strong linear correlation at N = 1.  

Then, we select the 3,666 traces with conductance at around 10-5 and analyse. These traces 

consist the molecular conductance peaks. Although in 1D histogram, there are a pair of molecular 

conductance peaks, they are hard to be selected trace by trace according to the conductance, as 

they are too close in conductance. Thus, we analyze these high-G and low-G molecular 

conductance peaks together and get N = 1.09 when PSD/GN and G become independent (Figure 

2.9c and 2.9d). The N close to 1 verifies that these peaks are from through-bond transmission. 

  



28 

 

2.4.6 NMR Spectra 
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Chapter 3. Using Deep Learning to Identify  

Molecular Junction Characteristics 

This chapter is based on the manuscript entitled Using Deep Learning to Identify Molecular 

Junction Characteristics by Tianren Fu, Yaping Zang, Qi Zou, Colin Nuckolls and Latha 

Venkataraman published in Nano Letters.26 Prof. Qi Zou synthesized and characterized all the 

compounds. Prof. Yaping Zang and I performed the conductance measurements. I conducted the 

data analysis. 

The scanning tunneling microscope-based break junction (STM-BJ) is used widely to 

create and characterize single metal-molecule-metal junctions. In this technique, conductance is 

continuously recorded as a metal point-contact is broken in a solution of molecules. Conductance 

plateaus are seen when stable molecular junctions are formed. Typically, thousands of junctions 

are created and measured, yielding thousands of distinct conductance versus extension traces. 

However, such traces are rarely analyzed individually to recognize the types of junctions formed. 

Here, we present a deep learning-based method to identify molecular junctions and show that it 

performs better than several commonly used and recently reported techniques. In this work, we 

demonstrate molecular junction identification from mixed solution measurements with accuracies 

as high as 97%. We also apply this model to an in situ electric-field driven isomerization reaction 

of a [3]cumulene to follow the reaction over time. Furthermore, we demonstrate that our model 

can remain accurate even when a key parameter, the average junction conductance, is eliminated 

from the analysis, showing that our model goes beyond conventional analysis in existing methods. 
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3.1 Introduction 

Break junction techniques, such as the scanning tunneling microscope-based break 

junction (STM-BJ)16-17 and mechanically controlled-break junction (MC-BJ),33-34 are robust and 

powerful methods to create and characterize well-defined single Au-molecule-Au junctions. In 

break junction experiments, the electronic properties of these junctions are typically recorded 

although in addition mechanical, thermoelectric and noise characteristics can also be measured 

and analyzed.38, 98-99 Most frequently, conductance data from these measurements are analyzed by 

looking at averages through histograms. However, a single break-junction measurement with 

multiple possible junction types requires a junction-by-junction analysis. This is especially true in 

STM-BJ measurements where in situ chemical reactions involve different molecules participating 

or created during the course of the measurement in one experiment.51-54 Recently, machine learning 

methods have been applied to STM-BJ data.20-21, 100-101 However, these methods still rely on 

averaging some aspects of the measurements, which results in a loss of information during the data 

preprocessing and analysis. 

Deep learning is a powerful but more complicated machine learning technique which is 

capable of representing and analyzing multiple aspects of measured data. Recently, deep learning-

based analysis have been applied to STM measurements,24 nano-gap conductance data,25 and to 

STM-BJ data using recurrent neural network102 and deep auto-encoder103 techniques. Among deep 

learning techniques, convolutional neural network (CNN) is a particularly powerful and popular 

method for image recognition.65 Since STM-BJ data, which records conductance as a function of 

distance (or equivalently time), can be regarded as a 1D image, CNN can, in principle, be applied 

to such data. In this study, we develop a CNN-based model that can be applied to single-molecule 

conductance data collected using an STM-BJ setup and demonstrate its higher accuracy and 
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robustness compared to non-deep learning models. Importantly, we show how this method can be 

used to characterize junctions where we remove a key parameter, its average conductance, 

highlighting the rich information available in conductance-time traces beyond what is analyzed 

using histograms. 

 

Figure 3.1: (a) Illustration of a molecular junction formed with STM-BJ. (b) Typical STM-BJ 

traces. (c) The 1D and (d) 2D histograms of a measurement of a mixed solution with 1,6-

diaminohexane and 4,4’-bis(methylthiol)biphenyl. (e) The 1D and (f) 2D histograms of the 

rightmost trace (single trace) shown in (b) showing only the molecular conductance region. 

In a single break junction measurement, two gold electrodes start in contact and are 

gradually pulled apart in a molecular solution, forming molecular junctions as shown in Figure 

3.1a. Conductance is recorded as a function of the electrode separation. Plateaus at or above 1 G0 

(G0 = 2e2/h, the quantum of conductance) correspond to atomic size gold contacts and plateaus 
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below 1 G0 are attributed to a molecule bridging the gap between the two electrodes. Figure 3.1b 

shows several example conductance-versus-displacement traces measured in the presences of a 

mixture of two molecules. Typically, conductance traces are analyzed by creating 1-dimensional 

(1D) conductance and 2-dimensional (2D) conductance-displacement histograms from all 

measured traces, as shown in Figure 3.1c and 3.1d. From these histograms we can obtain the 

average junction conductance and the average junction elongation length. 

 

Figure 3.2: (a) Illustration of STM-BJ data analysis methods. On the left are the methods used 

for data preprocessing to generate an input from original trace. On the right are the models 

that can be applied to analyze STM-BJ data. (b) A simplified chart showing the flow of data in 

the CNN model used here. (c) The illustration of one convolutional layer shown in (b). 

Single traces can also be converted to individual 1D and 2D histograms (see Figure 3.1e 

and 3.1f) and then analyzed using machine learning methods. For example, Hamillet et al21 have 

used the principal component analysis (PCA) method on single-trace 1D histograms (denoted as 
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PC1/1DH), while Cabosart et al20 have applied a KMeans++ clustering algorithm104-105 on single-

trace 2D histograms (denoted as KMeans/2DH) to categorize STM-BJ data. However, both these 

methods lose information that is present in the raw conductance-versus-displacement traces. For 

example, focusing on the molecular conductance plateau (Figure 3.1b), we see that small 

fluctuations and oscillations are lost when these are converted into single-trace histograms (Figure 

3.1e and 3.1f). 

3.2 Results and Discussion 

Here, we analyze the original STM-BJ conductance trace, i.e. a 1D array of conductance 

values. In Figure 3.2a, we summarize some common data analysis methods and show how traces 

are processed on the left and the classification algorithms used on the right. Among these, keeping 

all the raw data are likely the best, and this is easiest using a CNN-based analysis method. We 

therefore then design a CNN-based model as illustrated in Figure 3.2b. In this model, a clipped 

STM-BJ trace that excludes the gold point contact (data points with a conductance greater than 0.1 

G0) and noise floor (lower than 10-5 G0) is taken as input. This focuses the analysis on the molecular 

conductance region. After processing the data with 6 convolutional layers and 2 fully-connected 

layers, the model generates a class label as output, identifying the molecular junction type. The 

fully-connected layer here has the same structure as a layer in a regular multilayer perceptron, 

where in each fully-connected layer, the input data matrix is multiplied by a weight matrix and 

offset by a bias matrix. The result from each of these multiplications undergoes a non-linear 

activation to break the linearity; here we use a rectified linear unit (ReLU), where the negative 

values are simply flattened to zero.106 Dropout is then applied to provide extra robustness by 

randomly discarding outputs of some neurons during training; this prevents the network from 

relying on very few neurons.107 The convolutional layers used in this model are of the octave 
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convolution (OctConv) style,108 as illustrated in Figure 3.2c. Compared to vanilla convolution, 

OctConv recognizes data shapes better and remains invariant under scaling (by introducing the 

low-frequency section in Figure 3.2c). Each of the four columns in Figure 3.2c represent a vanilla 

convolutional layer, with a 1D convolution operation, batch normalization (BatchNorm)109 and 

ReLU. An OctConv layer is broken into four columns of convolutions providing the cross-

processing within and between the high-frequency branch and low-frequency branch to keep 

information shared between the two spatial scales. Nearest neighbor interpolation and average 

pooling are used to double or half the size of data to match the different data sizes. The structure 

of OctConv layers is described in detail in Section 3.4.2. 

To demonstrate the capabilities of this CNN model in classifying break-junction 

measurements trace-by-trace as well as those that have been used in the literature, we collect STM-

BJ data using three commercial compounds: 1,6-diaminohexane (1), 4,4’-bis(methylthiol)biphenyl 

(2) and 1,6-bis(methylthiol)hexane (3) (structures shown in Figure 3.3a). We measure each 

molecule individually and as mixed solutions (1 with 2, and 2 with 3) in 1,2,4-trichlorobenzene 

(TCB). The 1D and 2D histograms of the 1/2 mixture are shown in Figure 1c and 1d (and those of 

the 2/3 mixture are shown in supplementary Figure 3.7c and 3.7d). As an example, we train this 

CNN model on data obtained from measurements of pure 1 and pure 2, and an accuracy of 97.6% 

is achieve on this test dataset (based on analyzing 10% traces that were not used in training). We 

use this trained model to label the traces from mixed 1/2 solution measurement and plot the 1D 

histogram of all the traces classified to be 1- and 2-like by the model in Figure 3.3b. Figure 3.3c 

shows the corresponding 2D histograms. These histograms are very much like those measured on 

pure 1 and pure 2 (shown in Figure 3.6a-3.6d). We do not see a peak at the conductance value  
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Figure 3.3: (a) Chemical structures of 1, 2, 3. (b) The 1D and (c) 2D histograms of the traces 

judged to be 1-like (3,406 traces) or 2-like (4,876 traces) by the CNN model from mixed solution 

measurements. The histograms of all traces are shown in Figure 3.1b and 3.1c, and histograms 

of measurements on pure solutions are shown in Figure 3.6. (d) The 1D and (e) 2D histograms 

of the traces judged to be 2-like (7,678 traces) or 3-like (4,098 traces) by the CNN model from 

mixed solution measurements. 

corresponding to 2 in the 1-like traces and vice versa indicating that the model is highly accurate. 

The corresponding classification result using model designs reported by others are shown in Figure 

3.8; the accuracies of these models on pure molecule-test datasets are significantly lower (Table 

3.1). We also train this model in the same way on the 2/3 data, and obtain a 95.9% accuracy on the 

pure molecule test dataset. The 1D and 2D histograms of the algorithm-labeled traces from mixed 

2/3 solution measurements are shown in Figure 3.3d and 3.3e. We can see this CNN model 

performs extremely well in sorting data corresponding to molecules that have different backbone 
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structures (alkane versus phenylenes). For molecule pairs with the same backbones (for example 

two alkanes such as the 1/3 pair, shown in Table 3.1), the classification accuracy is lower (89.6% 

on the test dataset). This indicates that the deep learning algorithm picks out features in the 

conductance traces that are likely related to the molecular backbone rather than the linker. It is 

possibly that the backbone contributes more to the trace properties such as the conductance value 

and plateau length. 

 

Figure 3.4: (a) Chemical structures of the [3]cumulene derivatives. Under electric field, the cis-

isomer (4) transforms into the trans-isomer (5). (b) The percentage 4 (red dots) and 5 (blue dots) 

as a function of time as determined by the CNN model. (c) The 1D and (d) 2D histograms of 

the traces judged to be 4-like (4,997 traces) or 5-like (4,994 traces) by the CNN model from the 

10,000 traces measured 22 hrs after starting with a pure 4 solution. 

We next apply our CNN model to characterize conductance data measured with 

[3]cumulene derivatives 4 and 5 (structures shown in Figure 3.4a). We recently discovered and 
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reported that the electric field in STM-BJ setup can isomerize the cis-isomer 4 to the trans-isomer 

5 in situ.54 In this experiment, we recorded more than 100,000 conductance traces over a period of 

30-hour. By training the CNN model on measurements of pure 4 and 5 (achieving an 88.4% 

accuracy on the test dataset) and then applying it to the large data set, we determine the ratio of 

the cis-isomer 4 to the trans-isomer 5 as a function of time. Figure 3.4b shows this ratio determined 

from sets of 1,000 traces. From Figure 3.4b, we can observe the transformation of 4 to 5 during 

the timescale of the measurement. To demonstrate the performance this classification, we show 

the 1D and 2D histograms of the algorithm-labeled traces from a set of 10,000 traces measured at 

about 22 hrs after the start of the measurement in Figure 3.4c and 3.4d. We can see that these 

histograms have a very similar appearance comparing to the histograms of pure cis-isomer 4 and 

trans-isomer 5 (supplementary Figure 3.6g-3.6j), highlighting the accuracy of our model. 

In Table 3.1, we show results from applying the alternative models to sort different 

conductance data. We test the PC1/1DH and KMeans/2DH models (taken from the literatures20-21) 

and also introduce two additional ones. The first is a “brute force” method, which uses individual 

trace conditional histogram, and then sorts data based on the number of counts within different 

conductance regions.110 The second is a naïve logistic regression (LogitR), which does a logistic 

regression on the raw clipped conductance trace as a series of independent variables; this method 

is a simple linear model using the same input as the CNN model introduced in this work. We can 

see from the first column of Table 1 that the CNN model performs significantly better than all 

these simpler models for the mixed 1/2 molecule pair. Thus, although CNN needs more 

computational power for the training step, its extra complexity yields higher classification 

accuracy. 
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Table 3.1: The comparison among the reported and proposed models described in the main 

text. The accuracies of different models on different molecule pairs are shown in the table. For 

each experiment shown in each cell, 90% of the labeled dataset are used to train the model, 

while the remaining 10% are used for testing. In each cell, the accuracy on the test dataset is 

shown in the center, and the accuracy on the training dataset given in parenthesis. 

The accuracy of these four models on all other systems considered here are also shown in 

Table 1. For sorting the 1/3 mixture (the 3rd row) where the backbones are the same and the 

individual molecular conductances are also similar (both at ~2×10-4 G0), the accuracy is lower for 

all models when compared to the 1/2 and 2/3 mixtures. However, the drop in accuracy for the CNN 

model sorting the 1/3 mixture is much smaller than for other models. This implies that the CNN 

model can identify trace characteristics beyond simply the conductance value. To test if this is 

indeed the case, we design a reference analysis where the average plateau conductance information 

is removed (5th row of Table 3.1). Instead of using the clipped conductance trace as input, we use 

a randomly selected 0.4 nm-long fragment of molecular conductance plateau from the clipped trace 

and then subtract the average conductance value of this segment from this data, in order to remove 

the influence from conductance value as well as plateau length. We then test all models using this 
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new input. The accuracies of all the models decrease, but for the CNN model, the accuracy remains 

reasonably high (94.4% on the test dataset). 

 

Figure 3.5: The 1D histograms of 1-like (the light blue) or 2-like (the magenta) traces sorted by 

different models from mixed solution measurements. The classification results based on using 

0.4 nm fragments as inputs are shown as solid lines. As a reference, classification results using 

the clipped trace as input, are reproduced here as shaded regions. (a) The CNN model applied 

to 0.4 nm fragments yield 3,066 1-like and 5,216 2-like traces (compared with 3,406 1-like and 

4,876 2-like traces when using the full trace). (b) The PC1/1DH model applied to 0.4 nm 

fragments yield 6,053 1-like and 2,229 2-like traces (compared with 4,397 1-like and 3,901 2-like 

traces when using full trace). (c) The KMeans/2DH model applied to 0.4 nm fragments yield 

392 1-like and 7,890 2-like traces (compared with 5,260 1-like and 3,022 2-like traces when using 

full trace). (d) Logistic regression model applied to 0.4 nm fragments yield 4,730 1-like and 

3,553 2-like traces (compared with 4,569 1-like and 3,713 2-like traces when using full trace). 

We next demonstrate the classifications of traces excluding the average conductance 

information on the mixture solution of 1 and 2 in Figure 3.5. The significant result here, shown in 

Figure 3.5a, is that discarding the average conductance information does not yield very different 

results when using the CNN model, showing its robustness against the elimination of average 
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conductance information. For the other models, discarding conductance information produces a 

sorting that is more random. This indicates that these models rely strongly on the average 

conductance information. 

3.3 Conclusions 

In conclusion, we have demonstrated a new deep learning-based model to recognize 

molecular junction measurements performed with the STM-BJ technique that enables an accurate 

classification and characterization of molecular types. Comparing our model to some widely used 

and recently reported ones, we show that the CNN-based method achieves a much higher accuracy 

and importantly is able to sort traces without relying on the average conductance information, a 

critical innovation of this work. We demonstrate the application of this model to measurements of 

mixtures of molecules and also apply it to monitor an in-situ chemical reaction that is driven by 

the electric field during STM-BJ experiment. The excellent performance and robustness of this 

model makes it a favorable algorithm for analyzing such data. Its high-accuracy will enable more 

detailed investigations on systems with mixture of different kinds of molecular junctions, including, 

for example in situ reaction and surface chemistry. 

3.4 Supplementary Information 

3.4.1 STM-BJ Experiments in Detail 

All the scanning tunneling microscope-break junction (STM-BJ) experiments in this work 

are conducted in ambient conditions.17, 111 A gold tip and a gold-coated substrate are used as the 

two electrodes. To create molecular junctions, a piezo actuator is used to drive the tip and it is 

moved in and out of contact of the substrate at a rate of 20 nm·s-1. During a measurement, the 

voltage (V) and current (I) across the junction are continuously recorded, and conductance G is 
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calculated as G = I/V. These values are measured and recorded in a sampling frequency of 40 kHz. 

Hence, a 1 nm displacement corresponds to 2,000 data points. 

To form junctions with molecules, a dilute solution of analytes is added on the substrate 

and measurements are made within this solution environment. For measurements with compounds 

1, 2 and 3, we use 1,2,4-trichlorobenzene (TCB) as the solvent and apply a bias of 250 mV across 

the junction. For measurements with compounds 4 and 5, we use n-tetradecane (TD) as the solvent 

and apply a bias of 100 mV across the junction. All the pure molecule measurements (shown in 

Figure 3.6) are done with solution concentration of 0.1 mM. The measurement of mixtures of 1 

and 2 shown in Figure 3.3b, 3.3c, 3.7a and 3.7b have ~0.05 mM of 1 and 2. The measurement of 

mixtures of 2 and 3 shown in Figure 3.3d, 3.3e, 3.7c and 3.7d have 0.01 mM of 2 and 0.0025 mM 

of 3. The in-situ isomerization experiment of 4 starts with a 0.1 mM TD solution of 4. The 

histograms shown in Figure 3.4c, 3.4d, 3.7e and 3.7f are from 10,000 traces measured ~22 hours 

after the experiment was started. 

The compound 1 and 2 are obtained from Aldrich, and 3 from Alfa Aesar. These are used 

without further purification. The synthesis of compound 4 and 5 is reported in our previous work.54 

3.4.2 Structure of OctConv Layers 

As briefly discussed in Section 3.2, we apply OctConv-style convolutional layers.108 As 

shown in Figure 3.2c in Section 3.2, one OctConv layer has a pair of inputs and outputs (a high-

frequency and a low-frequency branch). The high-frequency branch uses the original input data, 

and the low-frequency branch has half the number of data points. Without the low-frequency input 

and output, the OctConv layer is the same as the vanilla convolutional layer.  

Each column in Figure 3.2c is a vanilla convolutional layer structure, where the input 

matrix goes through a 1D convolution operation, and then ReLU. Batch normalization 
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(BatchNorm) technique is applied to achieve a better and faster training, by normalizing the output 

values of convolution into zero mean-unit standard deviation during the training.109 As illustrated 

in Figure 3.2c, in one OctConv layer there are four of such vanilla convolutional columns; low-to-

low, low-to-high, high-to-low and high-to-high. Among them, the low-to-low and high-to-high do 

not involve any transformation because the lengths of input and output are the same. For low-to-

high, a nearest neighbor interpolation is used to double the data length by duplicating every data 

point. For high-to-low, an average pooling operation, which replaces two neighboring values by 

their mean is used to half the length. 

The OctConv layers have two pairs of input and output, so when connecting two of them, 

we connect low-frequency to low-frequency, high-frequency to high-frequency. The other 

components of the network, however, have only one pair of input and output. As the high-

frequency branch is the main stream, it is always retained. The low-frequency input/output is not 

used when connected to other components of the network. This means that two of the four columns 

of convolution (low-to-low and either low-to-high or high-to-low) are discarded because the low-

frequency is not provided or is not generated. 

3.4.3 CNN Model 

The convolutional neural network (CNN) model described in the main text is an CNN-

based model taking conductance traces as input and determining a class label as output. The model 

takes a 2,000-point-long 1D vector (segment of the conductance trace) as input. This corresponds 

to 1 nm of displacement in the measurement. As described in Section 3.2 (and illustrated in Figure 

3.2b and 3.2c), the input is first processed by 6 OctConv layers. The underlying convolution 

operations use 1D kernel sizes of 7, 7, 7, 9, 9, 9, respectively for each layer. The numbers of 

channels are 32, 32, 32, 64, 128, 256, respectively. If an OctConv layer produces both high-
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frequency and low-frequency outputs, half of the channel number is distributed to either of them. 

For example, the third OctConv layer has 16 high-frequency channels and 16 low-frequency 

channels, giving a total of 32 channels. After all convolutional layers, the data is flattened from 

2D (spatial × channels) into 1D vectors, so that they can be further fed into fully-connected layers. 

The following two fully-connected layers have size of 1,024 and 16, respectively. The dropout109 

rate applied on the fully-connected layers is 20%. Finally, after going through a sigmoid function, 

the output is generated as 1-bit probability of 0 or 1 providing a probability of the trace having the 

first label (0) or second label (1). 

This model is trained on the TensorFlow platform.112 For model training, a batch size of 

32 and learning rate of 3×10-6 are used, with an Adam optimizer113. A weight decay114-115 of 10% 

learning rate is applied to all the trainable variable in the whole model (except for BatchNorm) to 

provide extra regularization. These hyperparameters were not deliberately tuned in this work; fine 

tuning or improvement on the model is left for future work. 

Preprocessing of conductance traces.  

In order to focus on the molecular plateaus, we remove the gold conductance region of a 

trace (conductance > 10-1 G0) before feeding it to the model. We also remove the noise floor 

(conductance < 10-5 G0). In addition, all traces are aligned at close to the point when atomic Au-

Au contact breaks (chosen to be 0.5 G0), as is used in creating 2D conductance-displacement 

histograms. Finally, we feel only the first 2,000 points of data to the model, which represent the 

first nanometer of conductance data after Au-Au contact has ruptured.  
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Modifications analyzing data without including conductance.  

In Section 3.2 and Figure 3.5, we discuss a reference analysis when average plateau 

conductance is removed from the input during the training process. As we described in the main 

text, here, we use an 800-point-long (0.4 nm) segment of conductance plateau. These segments are 

randomly cut from molecular conductance plateaus in traces. We first take the logarithm of the 

values and then subtract the segment average. The input size of the CNN model is set to 800 points. 

We also change the flatten operation into a global mean operation, where for each channel, it 

returns the average value. Compared to flatten, global mean does not keep spatial information, and 

hence more appropriate for this type of input as the absolute values of displacement do not have 

physical meaning here. While for the training process the segments are randomly cut from plateaus, 

for the recognition process, the only first 800 points after rupture of Au-Au contact is used to 

ensure that only one segment is generated from each trace. 
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3.4.4 Additional STM-BJ Histograms 

STM-BJ histograms of pure molecular solutions.  

 

 

Figure 3.6: (a) 1D and (b) 2D conductance histograms of 1,6-diaminohexane (1). (c) 1D and (d) 

2D conductance histograms of 4, 4’-bis(methylthiol)biphenyl (2). (e) 1D and (f) 2D conductance 

histograms of 1,6-bis(methylthiol)hexane (3). (g) 1D and (h) 2D conductance histograms of 4. 

(i) 1D and (j) 2D conductance histograms of 5. 
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STM-BJ Histograms of Mixtures.   

 

Figure 3.7: (a) 1D and (b) 2D conductance histograms of the mixture of 1 and 2. These are the 

same histograms as Figure 3.1c and 3.1d except that they are rotated. (c) 1D and (d) 2D 

conductance histograms of the mixture of 2 and 3. (e) 1D and (f) 2D conductance histograms of 

the traces measured 22 hours after the experiment starting with pure 4. 
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3.4.5 Classification Results of All Models 

Results from different models with different molecule pairs shown in Table 3.1.  

 

 

Figure 3.8: Histograms of the traces judged to be 1-like or 2-like from measurements of a mixed 

solution. (a) The 1D and (b) 2D histograms classified by the brute force model: there are 3,782 

1-like traces and 4,516 2-like traces. (c) The 1D and (d) 2D histograms classified by the PC1/1DH 

model: there are 4,397 1-like traces and 3,901 2-like traces. (e) The 1D and (f) 2D histograms 

classified by the KMeans/2DH model: there are 5,260 1-like traces and 3,022 2-like traces. (g) 

The 1D and (h) 2D histograms classified by the logistic regression model on raw traces: there 

are 4,569 1-like traces and 3,901 2-like traces. 
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Figure 3.9: Histograms of the traces judged to be 2-like or 3-like from measurements of a mixed 

solution. (a) The 1D and (b) 2D histograms classified by the brute force model: there are 7,062 

2-like traces and 4,737 3-like traces. (c) The 1D and (d) 2D histograms classified by the PC1/1DH 

model: there are 6,549 2-like traces and 5,250 3-like traces. (e) The 1D and (f) 2D histograms 

classified by the KMeans/2DH model: there are 4,625 2-like traces and 7,151 3-like traces. (g) 

The 1D and (h) 2D histograms classified by the logistic regression model on raw traces: there 

are 4,959 2-like traces and 6,817 3-like traces. 
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Figure 3.10: Histograms of the traces judged to be 4-like or 5-like from the traces measured 

after ~22 hrs starting with a pure 4 solution. (a) The 1D and (b) 2D histograms classified by the 

brute force model: there are 5,653 cis-like (4-like) traces and 4,338 trans-like (5-like) traces; here 

the brute force model judges based on counts of points in the molecular conductance region. 

(c) The 1D and (d) 2D histograms classified by the PC1/1DH model: there are 6,577 cis-like 

traces and 3,414 trans-like traces. (e) The 1D and (f) 2D histograms classified by the 

KMeans/2DH model: there are 7,552 cis-like traces and 2,439 trans-like traces. (g) The 1D and 

(h) 2D histograms classified by the logistic regression model on raw traces: there are 6,691 cis-

like traces and 3,300 trans-like traces. 
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Figure 3.11: Histograms of the traces judged to be 1-like or 2-like with average plateau 

conductance removed from measurements a mixed solution. (a) The 1D and (b) 2D histograms 

classified by the CNN model with 3,066 1-like and 5,216 2-like traces. (c) The 1D and (d) 2D 

histograms classified by the brute force model with 3,245 1-like and 5,037 2-like traces. (e) The 

1D and (f) 2D histograms classified by modified brute force model which uses the standard 

deviation of the sections with 6,331 1-like and 1,951 2-like traces; (g) The 1D and (h) 2D 

histograms classified by the PC1/1DH model with 6,053 1-like and 2,229 2-like traces. (i) The 

1D and (j) 2D histograms classified by the KMeans/2DH model with are 392 1-like and 7,890 

2-like traces. (k) The 1D and (l) 2D histograms classified by the logistic regression model on 

raw traces with 4,730 1-like and 3,552 2-like traces. 
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Comparing performance of models in Figure 3.5 with random selection. 

As shown in Figure 3.5, after changing the input from whole trace into segments of 

molecular conductance plateau with average plateau conductance removed, the performance of 

models other than the CNN model drops significantly. This reflects that these other models rely 

on the average conductance information. Figure 3.12 compares histograms made with randomly 

selected traces with those shown in Figure 3.5. We can see the PC1/1DH model and KMeans/2DH 

model are close to a random selection. 

 

Figure 3.12: We compare the histograms shown in Figure 3.5 with ones generated from 

selecting the trace class randomly while keeping a similar number of traces as the sorted 

histograms to maintain a similar histogram height (red dashed lines). 
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Chapter 4. A Study of Single-Molecule Junction  

Formation and Evolution 

This chapter is based on the working manuscript entitled A Study of Single-Molecule 

Junction Formation and Evolution by Tianren Fu, Kathleen Frommer, Colin Nuckolls and Latha 

Venkataraman. Kathleen Frommer and I performed the conductance measurements. I conducted 

the data analysis. 

The scanning tunneling microscope-based break-junction (STM-BJ) technique is the most 

common method used to study electronic properties of single molecule junctions. It relies on 

repeatedly forming and rupturing an Au contact in an environment of the target molecules. The 

probability of junction formation is typically very large (~70-95%) prompting questions relating 

to how the nanoscale structure of the Au electrode before the metal point-contact ruptures alters 

junction formation. Here analyze conductance traces measured with the STM-BJ setup by 

combining correlation analysis and multiple machine-learning tools, including gradient boosted 

trees and neural networks. We show that two key features describing the Au-Au contact prior to 

rupture determine the extent of the contact relaxation (the snapback) and the probability of junction 

formation. Importantly, our data indicates strongly that molecular junctions are formed prior to the 

rupture of the Au-Au contact, explaining the high probability of junction formation observed in 

room-temperature solution measurements. 
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4.1 Introduction 

The scanning tunneling microscope-based break-junction (STM-BJ) technique has proven 

to be a unique and versatile tool for investigating the physio-chemical properties of single metal-

molecule-metal junctions.16-17 STM-BJ technique can robustly construct and characterize single 

molecular junctions of with molecules ranging from organic, inorganic and bio-molecules.116-121 It 

is also versatile in that it can be used to measure electronic, mechanical, thermoelectric and 

photoconducting properties of the junctions.41-46 In STM-BJ experiments, the impact that the 

nanoscale electrode structure and its evolution and relaxation upon elongation and rupture play on 

the molecular junction formation is not well studied or well understood.122-124 Recently, machine 

learning-assisted analyses have demonstrated the ability to analyze break-junction data to gain 

insights into molecular junction properties.19-23 Here we employ machine learning techniques, 

from simple correlation analysis to deep neural networks, to comprehensively analyze this problem, 

and show that we can learn more about the underlying factors that make STM-BJ measurement 

method robust, reliable and reproducible.  

In the STM-BJ method, metal-molecule-metal junctions are repeatedly formed and 

elongated until they break, while the current across the junction is continuously measured under 

an applied bias voltage, producing a conductance versus distance trace. At the start of such a trace, 

the metal electrodes are in contact, resulting in a high conductance, and as the STM tip is pulled 

away, the conductance drops in steps until a value close to 1 G0, where G0 = 2e2/h is the 

conductance quantum. This indicates the formation of a single atomic Au-Au contact, which 

breaks upon further elongation. Following its rupture, a single-molecule junction conductance 

plateau is often observed indicating that a molecule bridges the gap between the electrodes.16-17 

The average molecular plateau length is related to the molecular backbone length, however the 
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plateau length varies significantly from trace to trace and can depend on the molecular 

configuration within the junction122. It could also be related to the junction formation probability 

which can depend on the linker groups125-126. This average plateau length, however, is not equal to 

the length of the molecular junction. The difference is often attributed to the fact that Au electrodes 

relax when point-contact ruptures opening up a gap, known as the “snapback” distance, and this is 

used to account for the difference between the molecular junction length and the plateau length.127 

Usually, this snapback distance is reported as a single value28, 125, 127-128. Here, we show that the 

snapback distance is affected by the structure of the Au contact formed prior to the formation of 

the molecular junction which is altered by the solvent, and thus depends on the experimental 

conditions. Importantly, we also show that for individual traces, the measured snapback is not 

strongly correlated with the plateau length of a molecular junction, indicating that the plateau 

length is much less sensitive to the contact formation history. 

4.2 Results and Discussion 

To probe the structure of the Au contact and determine snapback distances, we modified 

the standard STM-BJ measurement. The Au contact is initially pulled apart, then pushed back to 

remake contact, and finally pulled apart again. A sample “pull-push”28, 129 conductance trace with 

the accompanying voltage ramp applied to the piezoelectric transducer that controls the substrate 

motion relative to the tip is shown in Figure 4.1 plotted against time. These measurements are 

made in a solvent, 1,2,4-trichlorobenzene (TCB), on a Au-coated substrate. As indicated in Figure 

1, the time at which the Au-Au contact has the highest conductance (Gmax) is designated as T1 and 

occurs before a single atomic contact forms. This single-atom Au-Au contact breaks at time T2, 

and this corresponds to the time when a large conductance drop is seen just below 1 G0. The 

displacement at T2 is denoted as Lbreak. Beyond T2, conductance drops to the instrument noise floor 
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Figure 4.1: Sample piezo ramp (upper panel) and conductance versus time trace (lower panel) 

for a push-pull trace measured in 1,2,4-trichlorobenzene (TCB) at an applied bias of 100 mV 

and pulling rate of 15 nm/s. T1 indicates the time when the highest conductance (Gmax) is 

observed; T2 is the time when the initial Au contact ruptures. Lpull indicates the distance pulled 

after the contact breaks and Lpush indicates the distance pushed before the contact is reformed. 

(~ 10-5 G0) if there is no molecule and remains at this level through the end of the pulling phase 

(light blue shaded region in Figure 4.1 designated Lpull) and into the beginning of the pushing phase 

of the measurement. On pushing the electrodes further together (dark blue shaded region in Figure 

4.1 designated Lpush), a contact is formed again. We use a conductance threshold of 0.05 G0 to 

indicate contact formation (although other thresholds up to 1 G0 do not alter our findings). We see 

that the time required to reform a Au-Au contact while pushing is greater than the time the 

electrodes are pulled apart after breaking the contact (i.e. Lpush > Lpull). This is due to the snapback 

reflecting that the Au electrodes relax after the contact is broken. The snapback is defined as Lpush 

− Lpull. For our analysis, we also consider three additional features related to the Au-Au contact 

evolution: the slope of the conductance versus distance trace for the Au region (mAu), which is 

determined by doing a linear regression on the region between T1 and T2; the length of the plateau 
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around 1 G0 (L1) and length of the plateau around 2 G0 (L2). If the measurements are done in a 

solution of molecules, after T2, instead of dropping into noise floor, a molecular conductance 

plateau is observed (see supplementary Figure 4.6 for a sample trace). The length of this plateau 

in a trace is the distance between the first and last point in the trace that is within the molecular 

conductance region as determined from a one-dimensional conductance histogram. These five 

parameters, Gmax, L1, L2, Lbreak and mAu describe evolution of the Au contact which we use to 

analysis the relation between snapback, molecular plateau length and the Au contact formation 

history. 

 

Figure 4.2: Two-dimensional (2D) correlation histograms constructed from 24,880 selected 

push-pull traces of 4,4''-diamino-p-terphenyl 0.1 mM in TCB solution. Black dashed lines are 

contour lines of 2D Gaussian fits. Snapback versus (a) Gmax with a Pearson correlation 

coefficient of 0.412; (b) Lbreak with a Pearson correlation coefficient is 0.679 and (c) Molecular 

plateau length with a Pearson correlation coefficient is -0.265. See Figure 4.9e-h for histograms 

of raw data. 

To demonstrate the correlation between these five parameters, two-dimensional correlation 

histograms are constructed from 24,880 measurements with 4,4”-diamino-p-terphenyl from a TCB 

solution. Figures 4.2a and 4.2b shows the correlation between snapback and Gmax and Lbreak, 

respectively. We see that snapback is positively correlated with both parameters though the 

correlation between snapback and Lbreak is much stronger. To rationalize this finding, we note that 

in addition to structural changes, the force required to elongate a contact also stretches the Au-Au 
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bonds within the tip asperities and the single atomic contact.122 Like a spring, which will recoil 

more the more it is stretched, elongating the bonds over a larger distance (a larger Lbreak) will result 

in a larger relaxation upon rupture, resulting in a larger snapback. Moreover, a larger Gmax indicates 

that the contact cross-section has many more atoms, and such a thicker contact will require a longer 

elongation to break resulting in a larger snapback. Figure 4.2c shows the correlation plot between 

snapback and molecular plateau length and reveals they are very weakly and negatively correlated. 

Since a larger snapback results in a wider gap right after the rupture of Au-Au point contact, it is 

reasonable that larger snapback reduces the further displacement needed to break the molecular 

junction, and results in a shorter plateau length. The small magnitude of correlation, however, is 

surprising. It indicates that the Au contacts relax fully only after the rupture of Au-molecule-Au 

junction. This can be rationalized by considering that the molecule can provide a force necessary 

to hold the electrodes in a slightly stretched form preventing them from relaxing as illustrated in 

supplementary Figure 4.9. However, this requires the molecule to be bridging across the electrodes 

even before the Au-Au point contact breaks, otherwise the relaxation will occur before the 

molecular bridge forms. This picture is indeed consistent with molecular dynamic simulations.130-

131  

To fully understand the impact of the Au-Au contact evolution history on snapback and 

plateau length, we plot in Figure 4.3a, the absolute value of their correlations with the five 

measured parameters: we can see that snapback depends primarily on Gmax and Lbreak, and not 

strongly on L1, L2 and mAu. However, none of these parameters are strongly correlated with 

molecular junction plateau length, indicating the plateau length is not determined by the evolution 

of the Au contact prior to rupture. 
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Figure 4.3: Metrics characterizing the importance of different parameters in determining 

snapback (blue bars) and molecular plateau length (red bars), for measurements in a 0.1 mM 

solution of 4,4''-diamino-p-terphenyl in TCB. The metrics are: (a) the magnitude of the 

correlation, (b) the total information entropy gain during the training of XGBoost models, (c) 

the permutation importance according to XGBoost models and (d) the mutual information 

coefficient (MIC). 

The correlation analysis, however, only interprets the linear relations between these 

parameters. In order to confirm these findings and to see if there might be some nonlinear relations 

that could change the conclusion, we also apply a few other methods to characterize the importance 

of these five parameters on snapback and the molecular junction plateau length. The first method, 

gradient boosted trees (GBT)132-133 is a machine learning algorithm with high expressivity and 

generalizability. GBT can find non-linear relations between parameters and has been widely used 

for feature extraction and selection.134-136 For the analysis here, we use the XGBoost60 package, 

which is one of the most powerful and frequently used implementation of GBT. In a typical GBT 

model, many decision trees are constructed to determine the dependent variable (say snapback or 

plateau length) from the independent variables (Gmax, Lbreak, L1, L2 and mAu). Each decision tree is 

made of many if-then-else decision nodes and the path taken through these nodes determines the 

output of a tree. During the training process, these nodes are built recursively on the independent 

variables (a process known as splitting) to satisfy the maximization of information entropy gain 

after applying the corresponding if-then-else rules. 
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We show in Figure 4.3b the importance of each parameter in determining snapback or 

plateau length. This importance is evaluated as the average information entropy gain for a 

parameter over all the splitting done during the tree construction process. We see that Gmax and 

Lbreak are important parameters in predicting snapback and no parameter that describes the gold 

contact structure predicts the molecular plateau length. With this XGBoost model, we also measure 

the permutation importance of each feature, shown in Figure 4.3c. The permutation importance59, 

137 is a robust metric against bias on a parameter distribution or model design; permutation 

importance of one parameter is defined as the performance drop of the model when we randomly 

shuffle the parameter to make it irrelevant. If the parameter is important, the model will perform 

worse without it. Here, we find that Lbreak is very helpful in determining the snapback while all 

other parameters are not critical.  

In Figure 4.3d, we show the maximum information coefficients (MIC)138-140 between the 

parameters and snapback or plateau length using the minepy package.138 MIC measures the 

dependence between two parameters that are either linearly or non-linearly related; it reflects the 

noise level in the data regardless of what the actual underlying relation between the parameters is. 

Again, we can see that Lbreak has a high importance in determining the snapback, Gmax has some 

importance, but the other three are negligibly important. For the plateau length, however, none of 

the parameters are important. This confirms our earlier hypothesis that molecular junctions are 

formed prior to the rupture of the Au-Au contact. 

To determine if our results are limited by the fact that we use just five manually-selected 

parameters, we try next to see if we can predict the snapback and plateau lengths by exploiting all 

the information on the Au contact evolution history, i.e. the trace through T2. For this, we build a 

convolutional neural network (CNN)-based deep learning model. Deep learning algorithms on 
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conductance traces have been proven effective and to be able to extract information other than 

basic features like length and mean conductance.26, 102, 141 By constructing two models with the 

identical structure to predict the snapback and plateau length, we find that the correlation between 

prediction and the actual value is 73.1% for snapback, and only 32.4% for plateau length (see 

Section 4.4.3 for details). This indicates that CNN algorithm also recognizes the weak correlation 

between the molecular junction plateau length and the Au contact evolution prior to junction 

formation. 

 

Figure 4.4: The most probable (a) Gmax, (b) Lbreak, and (c) snapback for 6 different solvents 

determined from Gaussian fits to histogram data, from pure solvent measurements; (d) The 

molecular plateau length for 4,4''-diamino-p-terphenyl solutions of 4 different solvents.  

Abbreviations for solvents used are as follows: PO = 1-phenyloctane, TD = tetradecane, TCB = 

1,2,4-trichlorobenzene, BN = 1-bromonaphthalene, IN = 1-iodonaphthalene, BA = 4-

bromoanisole. See Figure 4.7 and 4.9 for raw data. 

We now turn to measurements made in different solvents to understand how the 

environment affects the elongation and rupture of Au contacts. Figure 4.4a shows Gmax determined 
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from a series of measurements in different solvents commonly used for STM-BJ measurements, 

all obtained from commercial sources (see Figure 4.4 caption for list). Figure 4.4b shows Lbreak for 

these same solvents and Figure 4.4c shows the measured snapback. From Figures 4.4a-c we see 

that Gmax, Lbreak and snapback follow the same trends. We find that solvents with a low snapback 

value, such as phenyloctane (PO) and tetradecane (TD), are those which interact weakly with Au 

electrodes, and solely through Van der Waals interactions. By contrast, solvents with high 

snapback values, such as 1-bromonaphthalene (BN), 1-iodonaphthalene (IN) and 4-bromoanisole 

(BA), interact more strongly with the soft Au atoms through their soft halide group. Solvent-Au 

binding energy calculations142 confirm this finding. Since these solvent molecules bind to 

undercoordinated Au atoms that are pulled out of the surface, they stabilize the newly-formed Au 

surface, and thus decrease the energy required to elongate the Au contact. This in turn allows for 

a longer Lbreak. Since we have shown above that Lbreak is positively correlated with the snapback 

distance, solvents that passivate undercoordinated Au atoms are likely to lead to a longer snapback. 

In Figure 4.4d we show the measured molecular plateau length of 4,4''-diamino-p-terphenyl 

solution in TD, TCB, BN and BA. We find the plateau lengths are similar across different solvents 

and do not follow the trend seen with the snapback, likely because the linker-Au interaction is 

much less affected by the solvent effect. Additionally, this is consistent with our finding that the 

plateau length is very weakly correlated to the Gmax, Lbreak and snapback. 

For long molecules like 4,4''-diamino-p-terphenyl, nearly every Au-contact that is ruptures 

forms a molecular junction, so we turn to 1,3-diaminopropane to see if the junction formation 

probability differs in shorter molecules. We repeat the modified break-junction measurement 

illustrated in Figure 4.1 in a solution of 1,3-diaminopropane in TCB and analyze our data. Figure 

4.5a and 4.5b shows the correlation (absolute values) and tree-splitting importance (average 
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information entropy gain of the XGBoost model) of junction formation probability versus Gmax, 

Lbreak, L1, L2 and BAu. We can see that the junction formation probability is negatively correlated 

with the L1 (the length of the 1G0 plateau), but is much less correlated with any other parameter. 

This indicates that junctions with smaller L1 have a higher chance of forming a molecular junction 

while those with a longer L1 are less likely to form a molecular junction. This is consistent with 

our earlier hypothesis that the molecules bind to the two electrodes in parallel to the gold point-

contact. For junctions with short L1, a pre-existing molecular bridge is likely to survive after the 

Au point-contact ruptures as illustrated in the upper pathway in Figure 4.5c. For junctions with 

longer L1, the molecular bridge is likely to rupture before the Au-Au point contacts ruptures as 

illustrated in the lower pathway in Figure 4.5b. Together, these findings confirm our hypothesis 

that molecular junctions form prior to the rupture of the metal-contact in STM-BJ measurements. 

 

Figure 4.5: (a) The importance of different features in determining the existence of molecular 

junction (green bars) for the TCB solution of 1,3-propanediamine, as the magnitude of 

correlation (upper) and the tree-splitting importance according of the XGBoost models (lower). 

(b) Illustration of the pathway for the rupture of a short (upper) and long (lower) 1G0 contact 

with a short molecule in parallel to the contact. A molecular junction remains only in the upper 

path with a short Au-Au contact. 
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4.3 Conclusions 

In conclusion, through modified STM-BJ experiments we have shown that the relaxation 

of Au electrodes after breaking a point contact depends on the environment around the gold 

electrode. We show that this snapback is mainly dependent on two parameters that describe the 

Au contact prior to rupture: Gmax (highest conductance) and Lbreak (displacement until rupture). We 

however find that the molecular plateau length is only weakly and negatively correlated to the 

snapback, and is nearly independent on the parameters describing the Au contact. We find that the 

molecular junction plateau length and the junction formation probability for short molecules is 

mostly independent on the Au contact structure prior to rupture but we do find that it is negatively 

correlated with the length of the 1-G0 plateau. These results indicate that the molecules are bound 

to the Au electrode before the Au point contact ruptures. A complete relaxation of the electrodes 

happens only after the molecular junction also ruptures. These findings provide key insights into 

the versatility of STM-BJ measurements to form and characterize molecular conductance 

signatures in a ranger of solvents and environments. 
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4.4 Supplementary Information 

4.4.1 Additional Data 

Sample trace from a measurement with a molecule.   

 

Figure 4.6: Sample piezo ramp (upper panel) and conductance versus time trace (lower panel) 

for a push-pull trace measured in a 1,2,4-trichlorobenzen (TCB) solution of 4,4”-diamino-p-

terphenyl at an applied bias of 100 mV and pulling rate of 15 nm/s. T1 indicates the time when 

the highest conductance (Gmax) is observed; T2 is the time when the initial Au contact ruptures; 

T3 is the time when the Au-molecule-Au junction breaks. Lpull indicates the distance pulled 

after the contact breaks and Lpush indicates the distance pushed before the contact is reformed. 

PL is the length of molecular junction plateau. For an experiment with a solution of the target 

molecules, the snapback is determined in the same way as in a measurement with solvent 

alone, i.e., Lpush – Lpull, and the molecular plateau length is defined as the distance between the 

first and last point of the conductance trace that falls in the molecular conductance region. We 

only consider traces that have a molecular plateau if the plateau is longer than 0.01 nm. 
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Figure 4.7: Distribution histograms of parameters for pure solvent experiments. From top to 

bottom: different solvents, (a-c) 1-phenyloctane (PO), (d-f) tetradecane (TD), (g-i) 1,2,4-

trichlorobenzene (TCB), (j-l) 1-bromonaphthalene (BN), (m-o) 1-iodonaphthalene (IN) and (p-

r) 4-bromoanisole (BA). 
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Figure 4.8: (a) The most probable Gmax, (b) Lbreak, and (c) snapback for 4,4''-diamino-p-terphenyl 

solutions measured in four different solvents. Abbreviations for solvents used are as follows: 

TD = tetradecane, TCB = 1,2,4-trichlorobenzene, BN = 1-bromonaphthalene, BA = 4-

bromoanisole. 

 

Figure 4.9: Distribution histograms of parameters for experiments of 4,4''-diamino-p-terphenyl 

solutions. From top to bottom: different solvents, (a-d) tetradecane (TD), (e-h) 1,2,4-

trichlorobenzene (TCB), (i-l) 1-bromonaphthalene (BN) and (m-p) 4-bromoanisole (BA). 
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4.4.2 Snapback Experiment Details 

 

 

 

Figure 4.10: Illustration of a push-pull STM-BJ experiment in (a) on pure solvent, (b) solvent 

with a target molecule where the molecule is captured after the rupture of Au-Au contact, and 

(c) solvent with a target molecule where the molecule bridges the Au electrodes in parallel to 

the point-contact. The yellow triangles represent Au electrodes, and the blue ovals represent 

the molecules. 
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As explained in the main text, we design the modified push-pull STM-BJ experiment to 

measure the snapback distance of the Au electrodes after the junction ruptures. This distance is 

Lpush – Lpull from these push-pull measurements and determines the relaxation over a millisecond 

timescale. Figure 4.10a shows a simplified illustration of this experiment in a solvent, and 

compliments Figure 4.1. 

Going from left to right, Figure 4.10a starts with an Au-Au contact that ruptures then 

snapbacks back. After the contacts are pulled apart by a distance Lpull, we start to push the 

electrodes towards each other until a contact is formed. The distance the electrodes are pushed 

together is denoted as Lpush. Lpush includes the distance that the electrodes are withdrawn (denoted 

as Lpull
iso) and the amount that the electrodes relax, which is the snapback. Note that most of the 

relaxation occurs as soon as the contacts rupture, while some slower process that reorganize the 

electrodes also lead to an enlargement of the gap between the electrodes.28 

For experiments with molecules, the snapback is measured in the same way. In both cases, 

the threshold for Au-Au contact is chosen to be 0.05 G0 which is higher than the molecular 

conductance of all the molecules studied in this work. Hence, the snapback measurement does not 

interfere with the molecular junction plateau. This process is illustrated in Figure S5b and S5c, 

where we hypothesize that the snapback happens at the same stage as in the pure solvent 

experiments. 

Figure 4.10b illustrates a path where the molecular junction is formed after the contacts 

rupture. Here, the snapback occurs immediately after the Au-Au point contact ruptures as in the 

case of the pure solvent experiments illustrated in Figure 4.10a. A molecule is captured into this 

gap after the electrodes relax. 
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Figure 4.10c shows a junction where a molecule is already bound bridging the electrodes 

in parallel to the Au point-contact, the scenario that we argue here dominates in the measurements. 

Since the molecule is already present when the point contact breaks, the extent of the snapback is 

very much decreased since the two electrodes are still held together by the molecule, and thus 

under some tension. The electrodes relax fully only after the Au-molecule-Au junction finally 

breaks. We can still measure this snap-back as we do in the case without molecules, as Lpush – Lpull. 

Irrespective of whether a molecule is present before or after the electrodes relax, the 

maximum extension of a Au-molecule-Au should be a stochastic value with a molecule-dependent 

constant mean. For the path detailed in Figure 4.10b, the molecular plateau length should be this 

maximum extension minus the snapback, because the molecular junction starts with an initial 

displacement of the snapback. This would result in a strong negative correlation between the 

plateau length and the snapback, which is not observed in our experiments. For the path shown in 

Figure 4.10c however, since most of the snapback takes place after the molecular junction breaks, 

the measured plateau length is still bound by the maximal molecule-dependent value but depends 

on the details of the junction configuration, not on the snapback. 

To rationalize the small negative correlation seen in the experiments between the molecular 

plateau length and the snapback, this likely indicates the electrodes could relax partially after the 

Au-Au contact is ruptured. This explanation is reasonable because the strength of the Au-Au bond 

is greater than that of the linker-Au bond.38 

4.4.3 Details of the Neural Network Method 

We build two convolutional neural network (CNN)-based models that predict snapback 

and molecular plateau length from the Au conductance region of an STM-BJ conductance trace. 

Based on the performance of these two models, we can learn the connection between the snapback 
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or plateau length and the Au contact conductance evolution with length.26, 102, 141 Using this method, 

we eliminate the errors that could be there if instead of using the entire trace, we simply model the 

relations using a few key parameters. The drawback of this CNN structure is that it is hard to figure 

out which characteristics of the traces are important features in determining snapback or plateau 

lengths. 

In these two models, we use as input, the Au conductance region of the raw STM-BJ 

conductance trace in its initial pulling phase. The other parts of the trace are cut off and set to zero 

to prevent the model from directly reading out the snapback from the complete trace. Our model 

consists of 3 convolutional layers followed by a global average pooling and then a fully-connected 

layer. Each of these convolutional layers is a convolutional-batch normalization109-dropout107 

structure, where for the convolutional part, the kernel size = 21 points, the stride = 6 points, and 

the number of channels is 32. The width of the fully-connected layer is 8. Activation using rectified 

linear units (ReLU) are applied after each of these layers. 

 

Figure 4.11: The 2D dimensional correlation histograms between the measured and the model-

predicted values for (a) snapback and (b) molecular plateau length, according to the CNN-

based models. 
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We study the dataset of 24,880 traces from the experiment in a 1,2,4-trichlorobenzen (TCB) 

solution of 4,4''-diamino-p-terphenyl. We use 90% of these traces to train the models and the other 

10% for model validation. Training of these models was fulfilled by TensorFlow.112 

Using the validation dataset, which is not used during the training process, we obtain a 

correlation of 73.1% for snapback and 32.4% for the plateau length (Figure S6). The magnitude of 

this correlation can indicate how much the Au contact evolution history can determine the 

snapback or plateau length. We see that the snapback is determined by the evolution of the Au 

contact while the plateau length is not. 
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